Optical Coherence Tomography
Assessment of Angle Anatomy Changes After Cataract Surgery
Farnaz Memarzadeh, Maolong Tang, Yan Li, Vikas Chopra, Brian A. Francis, and David Huang

PURPOSE: To evaluate changes in anterior chamber (AC) morphology induced by cataract extraction using anterior segment optical coherence tomography (OCT).

DESIGN: Prospective comparative observational case series.

METHODS: Thirty-two eyes of 32 patients underwent OCT imaging of the angle before and after cataract surgery. Anterior chamber depth (ACD), angle opening distance at 500 μm (AOD500) and trabecular-iris space at 500 μm (TISA500) were measured pre- and postoperatively. Preoperative lens thickness (LT) and lens position (LP) were calculated.

RESULTS: ACD, AOD500 and TISA500 increased significantly after cataract extraction (P < .001). Preoperatively, ACD and LT highly correlated (P = .0083) as did ACD and TISA500 (P = .0001). TISA500 correlated with LP (P = .0001) but not with LT (P = .74).

CONCLUSIONS: Changes in angle morphology after cataract surgery can be imaged and objectively quantified by anterior segment OCT. Lens position may have a greater influence on angle width than LT. (Am J Ophthalmol 2007;144:464–465. © 2007 by Elsevier Inc. All rights reserved.)

Clinical experience has demonstrated that cataract extraction causes deepening of the central anterior chamber (AC) and widening of the angle. It is also a common clinical understanding that as lens thickness (LT) increases, there is an increase in angle crowding with predisposition to relative pupillary block. Thus, cataract extraction has been advocated in eyes with primary angle closure.1

Gonioscopy has traditionally been used for AC angle grading, but it is subjective and limited by interobserver bias. Ultrasound biomicroscopy is a more objective and reproducible method of angle assessment,1,2 but the immersion requirement is inconvenient and may cause artificial angle widening.3

Accepted for publication Apr 4, 2007.
From the Doheny Eye Institute and the Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California.
Inquiries to David Huang, Doheny Eye Institute, 1450 San Pablo Street, DEI5702, Los Angeles, CA 90033; e-mail: dhuang@usc.edu

Optical coherence tomography (OCT) is an imaging modality that allows cross-sectional imaging of the eye.4 It requires no contact or immersion and produces images with higher spatial resolution. In this study, we used OCT to quantify changes in anterior segment morphology after cataract extraction and to evaluate the effect of LT and position on angle opening.

We studied 32 eyes of 32 patients undergoing cataract extraction and intraocular lens implantation. After obtaining informed consent, all eyes underwent preoperative measurements of anterior chamber depth (ACD), axial length (AL), LT, lens position (LP defined as ACD + ½ LT) and baseline OCT imaging (Figure). OCT scans and ACD measurements were repeated one month postoperatively.

We used an anterior segment OCT prototype provided by Carl Zeiss Meditec, Inc, (Dublin, California, USA), which uses a 1.3-μm wavelength light source to acquire 2,000 axial scans/second. Cross-sectional images were obtained in nasal and temporal quadrants. Images were analyzed using custom MATLAB software 7.0 (The MathWorks, Inc,
Our experiences have shown that OCT is a valuable tool for evaluating the effects of cataract surgery and peripheral iridotomy6,7 on the AC angle. This technology can be of use in evaluating patients with narrow angles and cataracts who are undergoing cataract extraction for the therapeutic purpose of widening the angle.

THIS STUDY WAS SUPPORTED BY GRANT NIH R01 EY 13516, National Eye Institute, Bethesda, Maryland and an unrestricted grant from Research to Prevent Blindness, Inc, New York, New York. Research equipment and grant support from Carl Zeiss Meditec, Inc, Dublin, California. Dr Huang receives royalties from OCT patents licensed to Carl Zeiss Meditec, Inc. Drs Huang, Tang, and Li received grant research support from Carl Zeiss Meditec, Inc. The authors indicate no financial conflict of interest. Involved in design and conduct of study (D.H., M.T., Y.L.); collection, management, analysis and interpretation of the data (F.M., M.T., Y.L., V.C., B.A.F., D.H.); and preparation, review and approval of the manuscript (F.M., V.C., B.A.F., D.H.). This study was approved by Institutional Review Board of University of Southern California and was conducted in accord with Health Insurance Portability and Accountability Act (HIPAA) regulations.

REFERENCES

Common Forms of Childhood Strabismus in an Incidence Cohort

Brian G. Mohney

PURPOSE: To report the prevalent forms of childhood strabismus.

DESIGN: Retrospective, population-based cohort study.

METHODS: The medical records of all Olmsted County, Minnesota, residents younger than 19 years diagnosed...