PUBLISHED WORK

Advanced Imaging for Glaucoma Findings

PEER REVIEWED ARTICLES 

1. Sehi M, Guaqueta DC, Feuer WJ, Greenfield DS. Advanced Imaging in Glaucoma Study Group(Huang D). Scanning laser polarimetry with variable and enhanced corneal compensation in normal and glaucomatous eyes. Am J Ophthalmol 2007;143:272-279.  doi:10.1016/j.ajo.2006.09.049.  PMCID: PMC1832116. 

2. Wang Y, Bower BA, Izatt JA, Tan O, Huang D. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J Biomed Opt 2007;12:041215-22. doi:10.1117/1.2772871. 

3. Tan O, Li G, Lu ATH, Varma R, Huang D. Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 2008;115:949-956. doi:10.1016/j.ophtha.2007.08.011. PMCID:  PMC2692598. 

4. Alasil T, Tan O, Lu ATH, Huang D, Sadun, AA. Correlation of Fourier domain optical coherence tomography retinal nerve fiber layer maps with visual fields in nonarteritic ischemic optic neuropathy. Ophthalmic Surg Laser Imaging 2008;39(suppl):S71-S79. doi:10.3928/15428877-20080715-03. PMCID: PMC2654551. 

 

5. Lu ATH, Wang M, Varma R, Schuman JS, Greenfield DS, Smith SD, Huang D. Advanced Imaging for Glaucoma Study Group. Combining nerve fiber layer parameters to optimize glaucoma diagnosis with optical coherence tomography. Ophthalmology 2008;115:1352-1357. doi:10.1016/j.jcrs.2008.05.026. PMCID: PMC2756507. 

 

6. Wang Y, Bower BA, Izatt JA, Tan O, Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt 2008;13:0640031-0640039. doi:10.1117/1.2998480. PMCID: PMC2840042. 

7. Wang Y, Lu A, Gil-Flamer J, Tan O, Izatt JA, Huang D. Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography. Br J Ophthalmol 2009;93:634-637. doi:10.1136/bjo.2008.150276. PMCID: PMC2743389. 

8. Tan O, Chopra V, Lu ATH, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 2009;116:2305-2314. doi:10.1016/j.ophtha.2009.05.025. PMCID: PMC2787911. 

9. Grzywacz NM, de Juan J, Claudia F, Giannini D, Huang D, Koch G, Russo V, Tan O, Bruni C. Statistics of optical coherence tomography data from human retina. IEEE Transactions on Medical Imaging 2010;29:1224-1237. doi:10.1109/TMI.2009.2038375. PMCID: PMC2922066. 

10. Wang Y, Fawzi AA, Varma R, Sadun AA, Zhang X, Tan O, Izatt JA, Huang D. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci 2011;52:840-845. doi:10.1167/iovs.10-5985. PMCID: PMC3053109. 

11. Wang Y, Fawzi AA, Tan O, Zhang, X, Huang D. Flicker-induced changes in retinal blood flow assessed by doppler optical coherence tomography. Biomed Opt Express 2011;2:1852-1860. doi:10.1364/BOE.001852. PMCID: PMC3130572. 

12. Grewal DS, Sehi M, Greenfield DS, and The Advanced Imaging in Glaucoma Study Group (Huang D). Comparing rates of retinal nerve fibre layer loss with GDxECC using different methods of visual-field progression. Br J Ophthalmol 2011;95:1122-1127. doi:10.1136/bjo.2010.183483. PMCID: PMC4978139. 

13. Konduru R, Tan O, Nittala MG, Huang D, Sadda SR. Reproducibility of retinal blood flow measurements derived from semi-automated Doppler OCT analysis. Ophthalmic Surg Lasers Imaging 2012;43:25-31. doi:10.3928/15428877-20111129-04.

 

14. Sehi M, Bhardwaj N, Chung YS, Greenfield DS, Advanced Imaging for Glaucoma Study (Huang D). Evaluation of baseline structural factors for predicting glaucomatous visual-field progression using optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmology. Eye (London) 2012;26:1527-1535. doi:10.1038/eye.2012.203. PMCID: PMC3522838. 

15. Niles PI, Greenfield DS, Sehi M, Bhardwaj N, Iverson SM, Chung YS, Advanced Imaging for Glaucoma Study (Huang D). Detection of progressive macular thickness loss using optical coherence tomography in glaucoma suspect and glaucomatous eyes.  Eye (London) 2012;26(7):983-91. doi:10.1038/eye.2012.76. PMCID: PMC3396176. 

16. Jia Y, Tan O, Tokayer J, Potsaid BM, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography.  Opt Express 2012;20:4710-4725. doi:10.1364/OE.20.004710. PMCID: PMC3381646. 

17. Jiang C, Li Y, Huang D, Francis BA. Study of anterior chamber aqueous tube shunt by Fourier-domain optical coherence tomography. J Ophthalmol 2012;2012:189580. doi:10.1155/2012/18958. PMCID: PMC3388420.   

18. Huang D, Chopra V, Lu ATH, Tan O, Francis B, Varma R, Advanced Imaging for Glaucoma Study. Does optic nerve head size variation affect circumpapillary retinal nerve fiber layer thickness measurement by optical coherence tomography? Invest Ophthalmol Vis Sci 2012;53:4990-4997. doi:10.1167/iovs.11-8214. PMCID: PMC4625828. 

19. Jia Y, Morrison JC, Tokayer JM, Tan O, Lombardi L, Baumann B, Lu CD, Choi WJ, Fujimoto JG, Huang D. Quantitative OCT angiography of optic nerve head blood flow. Biomedical Opt Express 2012;3:3127-3137. doi:10.1364/BOE.3.003127. PMCID: PMC3521313. 

20. Hwang JC, Konduru R, Zhang X, Tan O, Francis BA, Varma R, Sehi M, Greenfield DS, Sadda SR, Huang D. Relationship among visual field, blood flow, and neural structure measurements in glaucoma. Invest Ophthalmol Vis Sci 2012;53:3020-3026. doi: 10.1167/iovs.11-8552. PMCID: PMC3378085. 

21. Sehi M, Chung YS, Greenfield DS, Zhang X, Wollstein G, Francis BA, Schuman JS, Varma R, Huang D. Retinal nerve fiber layer atrophy is associated with visual field loss over time in glaucoma suspect and glaucomatous eyes. Am J Ophthal 2012;155:73-82. doi:10.1016/j.ajo.2012.07.005. PMCID: PMC3525739. 

22. Aggarwal D, Tan O, Huang D, Sadun A. Patterns of ganglion cell complex and nerve fiber layer loss in non-arteritic ischemic optic neuropathy by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012;53:4539-4545. doi:10.1167/iovs.11-9300. PMCID: PMC4625826. 

23. Grewal S, Sehi M, Paauw JD, Greenfield DS, and the Advanced Imaging in Glaucoma Study Group (Huang D). Detection of progressive retinal nerve fiber layer thickness loss with optical coherence tomography using 4 criteria for functional progression. J Glaucoma 2012;21:214-220. doi:10.1097/IJG.0b013e3182071cc7. PMCID: PMC3170667. 

24. Tokayer J, Jia Y, Dhalla AH, Huang D. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomedical Opt Express 2013;4:1909-1924. doi:10.1364/BOE.4.001909. PMCID: PMC3799655. 

25. Le PV, Tan O, Chopra V, Francis BA, Ragab O, Varma R, Huang D. Regional correlation among ganglion cell complex, nerve fiber layer, and visual field loss in glaucoma. Invest Ophthalmol Vis Sci 2013:54:4287-4295. doi:10.1167/iovs.12-11388. PMCID: PMC3691052. 

26. Hwang JC, Khine KT, Rao NA, Minckler DS, Memarzadeh F, Li Y, Huang D, Francis BA. Assessment of the anterior chamber angle after trabectome glaucoma surgery by optical coherence tomography, histopathology, ultrasound biomicroscopy and scanning electron microscopy. Int J Ophthalmic Pathol 2013;2:4. doi: 10.4172/2324-8599.1000125. 

27. Wei E, Jia Y, Tan O, Potsaid B, Liu JJ, Choi WJ, Fujimoto JG, Huang D. Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT angiography. PLoS ONE 2013;8(12):e81343. doi:10.1371/journal.pone.0081343. PMCID: PMC3846672. 

28. Wang X, Jia Y, Spain R, Potsaid B, Liu JJ, Baumann B, Hornegger J, Fujimoto JG, Wu Q, Huang D. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol 2014;98:1368-1373. doi: 10.1136/bjophthalmol-2013-304547. PMCID: PMC4598177. 

29. Wang M, Lu ATH, Varma R, Schuman JS, Greenfield DS, Huang D, and the Advanced Imaging for Glaucoma Study Group. Combining information from three anatomic regions in the diagnosis of glaucoma with time-domain optical coherence tomography. Journal of Glaucoma 2014;23:129-135. doi:10.1097/IJG.0b013e318264b941. PMCID: PMC3535579. 

30. Sehi M, Goharian I, Konduru R, Tan O, Srinivas S, Sadda S, Francis BA, Huang D, Greenfield DS. Retinal blood flow in glaucomatous eyes with single hemifield damage. Ophthalmology 2014;121:750758. doi:10.1016/j.ophtha.2013.10.022. PMCID: PMC3943624. 

31. Sehi MGoharian IKonduru RTan OSrinivas SSadda SRFrancis BAHuang DGreenfield DS. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology 2014;121(3):750-758. doi:10.1016/j.ophtha.2013.10.022. PMCID: PMC3943621. 

32. Jia Y, Wei E, Wang X, Zhang X, Morricson JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014;121:1322-1332. doi:10.1016/j.ophtha.2014.01.021. PMCID: PMC4082728.   

33. Shahidi AMPatel SRHuang DTan OFlanagan JGHudson C. Assessment of total retinal blood flow using Doppler Fourier Domain Optical Coherence Tomography during systemic hypercapnia and hypocapnia. Physiol Rep. 2014;2(7). pii: e12046. doi:10.14814/phy2.12046. PMCID: PMC4187559. 

34. Rose K, Jong M, Yusof F, Tayyari F, Tan O, Huang D, Sadda SR, Flanagan JG, Hudson C. Grader learning effect and reproducibility of Doppler spectral-domain optical coherence tomography derived retinal blood flow measurements. Acta Ophthalmol 2014;92(8):e630-6. doi:10.1111aos.12479.   

35. Tan O, Konduru R, Zhang X, Sadda, SR, Huang D. Dual-angle protocol for Doppler optical coherence tomography to improve retinal blood flow measurement. Transl Vis Sci Technol 2014;3(4). doi:10.1167/tvst.3.4.6. 

36. Tayyari FYusof  FVymyslicky MTan OHuang DFlanagan JGHudson C. Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects. Invest Ophthalmol Vis Sci. 2014;55(12):7716-7725. doi:10.1167/iovs.14-14430.   

37. Le PV, Zhang X, Francis BA, Varma R, Greenfield DS, Schuman JS, Loewen N, Huang D, Advanced Imaging for Glaucoma Study Group. Advanced imaging for glaucoma study:  design, baseline characteristics and inter-site comparison. Am J Ophthal 2015;159:393-403.e2. doi: 10.1016/j.ajo.2014.11.010. PMCID: PMC4277893.  

38. Loewen NA, Zhang X, Tan O, Francis BA, Greenfield DS, Schuman JS, Varma R, Huang D. Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography. Br J Ophthalmol 2015;99:1224-1229.  doi:10.1136/bjophthalmol-2014-305907. PMCID: PMC5457797. 

39. Tan O, Liu G, Liu L, Gao SS, Pechauer AD, Jia Y, Huang D. En face Doppler total retinal blood flow measurement with 70 kHz spectral optical coherence tomography. J Biomed Opt 2015;20(6):066004. doi:10.1117/1JBO.20.6.066004. PMCID: PMC4462711. 

40. Srinivas STan OWu SNittala MGHuang DVarma RSadda SR. Measurement of retinal blood flow in normal Chinese-American subjects by Doppler Fourier-domain optical coherence tomography.  Invest Ophthalmol Vis Sci. 2015;56(3):1569-1574. doi: 10.1167/iovs.14-15038. PMCID: PMC4351651.   

41. Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, Flaxel CJ, Lauer AK, Wilson DJ, Hornegger J, Fujimoto JG, Huang D.  Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci USA 2015;112:E2395-E2402. doi:10.1073/pnas.1500185112. PMCID: PMC4426471. 

42. Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol 2015;133:1045-1052. doi:10.1001/jamaophthalmol.2015.2225.  PMCID: PMC4950955

43. Pechauer AD, Huang D, Jia Y. Detecting blood flow response to stimulation of the human eye. Biomed Res Int 2015; 2015:121973. doi. 10.1155/2015/121973. PMCID: PMC4609341

44. Zhang X, Iverson SM, Tan O, Huang D. Effect of Signal Intensity on Measurement of Ganglion Cell Complex and Retinal Nerve Fiber Layer Scans in Fourier-Domain Optical Coherence Tomography. Transl Vis Sci Technol 2015;4. doi:10.1167/tvst.4.5.7. PMCID: PMC4594467

45. Zhang, X, Loewen N, Tan O, Greenfield DS, Schuman JS, Varma R, Huang D, and the Advanced Imaging for Glaucoma Study Group.  Predicting development of glaucomatous visual field conversion using baseline Fourier-domain optical coherence tomography. Am J Ophthal 2016;163:29-37. doi: 10.1016/j.ajo.2015.11.029. PMCID: PMC4769942

46. Zhang X, Francis BA, Dastiridou A, Chopra V, Tan O, Varma R, Greenfield DS, Schuman JS, Huang D, for the Advanced Imaging for Glaucoma Study Group.  Longitudinal and cross-sectional analyses of age effects on retinal nerve fiber layer and ganglion cell complex thickness by Fourier-domain OCT.  Transl Vis Sci Technol 2016;5:1.  doi:10.1167/tvst.5.2.1.  PMCID:  PMC4782827

47. Richter G, Zhang X, Francis BA, Chopra V, Greenfield DS, Varma R, Schuman JS, Huang D, for the Advanced Imaging for Glaucoma Study Group. Regression analysis of optical coherence tomography disc variables for glaucoma diagnosis. J Glaucoma 2016;25:634-642. doi:10.1097/IJG.0000000000000378. PMCID: PMC4969235. 

48. Tan O, Liu L, Zhang X, Morrison JC, Huang D. Glaucoma increases retinal surface contour variability as measured by optical coherence tomography. Invest Ophthalmol Vis Sci 2016;57:OCT438-433. doi:10.1167/iovs.15-18911. PMCID: PMC4968915. 

49. Zhang X, Dastiridou A, Francis BA, Tan O, Varma R, Greenfield DS, Schuman JS, Sehi M, Chopra V, Huang D. Advanced Imaging for Glaucoma Study Group. Baseline Fourier-domain optical coherence tomography structural risk factors for visual field progression in the advanced imaging for glaucoma study. Am J Ophthalmol 2016;172:94-103. doi:10.1016/j.ajo.2016.09.015. PMCID: PMC5121039. 

50. Zhang X, Dastiridou A, Francis BF, Tan O, Varma R, Greenfield DS, Schuman JS, Huang D. Comparison of glaucoma progression detection by optical coherence tomography and visual field. Am J Ophthalmol 2017;184:63-74. doi.org/10.1016/j.ajo.2017.09.020. PMCID:  PMC5894829. 

51. Tan O, Liu Li, Liu Liang, Huang D. Nerve fiber flux analysis using wide-field swept-source optical coherence tomography. Transl Vis Sci Technol 2018;7:16. doi:10.1167/tvst.7.1.16. PMCID: PMC5804304. 

52. Zhang X, Parrish RK 2nd, Greenfield DS, Francis BA, Varma R, Schuman JS, Tan O, Huang D. Advanced Imaging for Glaucoma Study.  Predictive factors for the rate of visual field progression in the Advanced Imaging for Glaucoma Study. Am J Ophthalmol 2019;202:62-71.  doi: 10.1016/j.ajo.2019.02.015. PMCID: PMC6548618. 

53. Tan O, Greenfield DS, Francis BA, Varma R, Schuman JS, Huang D. Estimating visual field mean deviation using optical coherence tomographic nerve fiber layer measurements in glaucoma patients. Sci Rep 2019;9, 18528. doi:10.1038/s41598-019-54792-w. PMCID:PMC6898302. 

©2020 by Advanced Imaging for Glaucoma. Proudly created with Wix.com